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Task 5.17.1.4: Supervised Machine Learning 

Regression for N-Nitrosodimethylamine (NDMA)

• NDMA is a key disinfection byproduct in reuse but monitoring 

NDMA in real-time is not possible with commercial sensors. 

• In RO-based reuse, UV/AOP is operated conservatively, assuming 

the maximum historical NDMA concentration.

• Machine learning (ML) was explored to develop an NDMA soft 

sensor based on existing data from OCWD.

• NDMA soft sensors could make potable reuse more resilient and 

efficient by dynamically updating UV/AOP control to reflect 

actual influent NDMA concentrations.

• To achieve a final NDMA concentration of 0.69 ng/L, the site 

could reduce their UV dose by 21-29% (depending on the desired 

factor of safety, Figure 3), using a hybrid statistical-ML approach 

to predict influent NDMA.

• Preliminary data from a new site indicated a daily pattern, 

suggesting a benefit to adaptive control (Figure 4).
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Task 5.17.1.3: Non-Parametric Statistics for

RO LRV Modeling

• Intact reverse osmosis (RO) removes pathogens by over 

99.999%.

• Online surrogates can show a minimum log reduction value 

(LRV) that is being achieved at any time. However, the 

sensors for these surrogates are prone to erroneous 

outliers, making the data distribution skewed.

• We proposed an advanced statistical method called the 

Shewhart Sign Chart.

• This method reduced alarms by ignoring non-consecutive 

outliers. 

• With a rolling window of 12 hourly points, it would trigger 

for true events in 3 hours (Figure 1).
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Task 1.3

Key Findings:
• Most RO LRV surrogates evaluated (Ca, S, Sr, TOC, and Peak C Fluorescence) 

were not normally distributed; most were left-skewed and S was bimodal.

• Left-skewed data would cause excessive alarms if assumed normal. 

• A Shewhart Sign Chart could detect true events in 3 hr while reducing alarms 

by >50% compared to alarms on single points.

Conclusions:

• Shewhart Sign Chart for RO LRV monitoring would meet the Reliability & 

Availability pipe parity metric by reducing false alarms by 50%.

• Scale-up is feasible through real-time cloud dashboards.

Task 1.4

Key Findings:
• NDMA concentrations are highly correlated to pressure drops across RO 

membranes and influent ammonia concentrations. 

• The optimal model inputs depend on model type. PCA is an effective method 

of dimension reduction for process units like RO-banks with a large number of 

correlated features. In this case, all PCA-based models performed as well or 

better than mRMR, a feature selection approach.

• While different model types may compare similarly on average, many predict 

extreme outliers in simulated real-time forecasts (e.g., support vector 

machines and k-nearest neighbors). 

Conclusions:

• Support vector machines with PCA dimension reduction for the RO units can 

successfully predict NDMA. Follow-on work includes an expanded sampling 

campaign for deployment. 
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• This method has new been implemented on full-scale RO 

via a cloud dashboard at OCWD (Figure 2).
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